【算法分析与设计】岛的数量

       📝个人主页五敷有你      

 🔥系列专栏:算法分析与设计

⛺️稳中求进,晒太阳

题目

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例

示例 1:

输入:grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
输出:1

示例 2:

输入:grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
]
输出:3s

思路

深度优先遍历

DFS 的基本结构

首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c) 来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)、(r+1, c)、(r, c-1)、(r, c+1)。换句话说,网格结构是「四叉」的。

其次,网格 DFS 中的 base case 是什么?应该是网格中不需要继续遍历、grid[r][c] 会出现数组下标越界异常的格子,也就是那些超出网格范围的格子。

 

这一点稍微有些反直觉,坐标竟然可以临时超出网格的范围?这种方法我称为「先污染后治理」—— 甭管当前是在哪个格子,先往四个方向走一步再说,如果发现走出了网格范围再赶紧返回。这跟二叉树的遍历方法是一样的,先递归调用,发现 root == null 再返回。

如何避免重复遍历

网格结构的 DFS 与二叉树的 DFS 最大的不同之处在于,遍历中可能遇到遍历过的结点。这是因为,网格结构本质上是一个「图」,我们可以把每个格子看成图中的结点,每个结点有向上下左右的四条边。在图中遍历时,自然可能遇到重复遍历结点。

这时候,DFS 可能会不停地「兜圈子」,永远停不下来。

如何避免这样的重复遍历呢?答案是标记已经遍历过的格子。以岛屿问题为例,我们需要在所有值为 1 的陆地格子上做 DFS 遍历。每走过一个陆地格子,就把格子的值改为 2,这样当我们遇到 2 的时候,就知道这是遍历过的格子了。也就是说,每个格子可能取三个值:

0 —— 海洋格子
1 —— 陆地格子(未遍历过)
2 —— 陆地格子(已遍历过)

代码实现

class Solution {
    
    public int numIslands(char[][] grid) {
       if (grid == null || grid.length == 0) {
            return 0;
        }

        int nr = grid.length;
        int nc = grid[0].length;
        int num_islands = 0;
        for (int r = 0; r < nr; ++r) {
            for (int c = 0; c < nc; ++c) {
                if (grid[r][c] == '1') {
                    ++num_islands;
                    dfs(grid, r, c);
                }
            }
        }

        return num_islands;
    }
 void dfs(char[][] grid, int r, int c) {
        int nr = grid.length;
        int nc = grid[0].length;

        if (r < 0 || c < 0 || r >= nr || c >= nc || grid[r][c] == '0') {
            return;
        }

        grid[r][c] = '0';
        dfs(grid, r - 1, c);
        dfs(grid, r + 1, c);
        dfs(grid, r, c - 1);
        dfs(grid, r, c + 1);
    }



}

运行结果